Generalized Derivation
نویسندگان
چکیده
In this paper, we give an extension of the orthogonality results to dominant operators and p-hyponormal or log-hyponormal operators, also we will generalize some commutativity results. AMS 2000 Mathematics Subject Classification. 47B47, 47A30, 47B20.
منابع مشابه
On Jordan left derivations and generalized Jordan left derivations of matrix rings
Abstract. Let R be a 2-torsion free ring with identity. In this paper, first we prove that any Jordan left derivation (hence, any left derivation) on the full matrix ringMn(R) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. Next, we show that if R is also a prime ring and n 1, then any Jordan left derivation on the ring Tn(R) of all n×n uppe...
متن کاملGeneralized sigma-derivation on Banach algebras
Let $mathcal{A}$ be a Banach algebra and $mathcal{M}$ be a Banach $mathcal{A}$-bimodule. We say that a linear mapping $delta:mathcal{A} rightarrow mathcal{M}$ is a generalized $sigma$-derivation whenever there exists a $sigma$-derivation $d:mathcal{A} rightarrow mathcal{M}$ such that $delta(ab) = delta(a)sigma(b) + sigma(a)d(b)$, for all $a,b in mathcal{A}$. Giving some facts concerning general...
متن کاملOn the stability of generalized derivations on Banach algebras
We investigate the stability of generalizedderivations on Banach algebras with a bounded central approximateidentity. We show that every approximate generalized derivation inthe sense of Rassias, is an exact generalized derivation. Also thestability problem of generalized derivations on the faithful Banachalgebras is investigated.
متن کاملA note on power values of generalized derivation in prime ring and noncommutative Banach algebras
Let $R$ be a prime ring with extended centroid $C$, $H$ a generalized derivation of $R$ and $ngeq 1$ a fixed integer. In this paper we study the situations: (1) If $(H(xy))^n =(H(x))^n(H(y))^n$ for all $x,yin R$; (2) obtain some related result in case $R$ is a noncommutative Banach algebra and $H$ is continuous or spectrally bounded.
متن کاملOn Identities with Additive Mappings in Rings
begin{abstract} If $F,D:Rto R$ are additive mappings which satisfy $F(x^{n}y^{n})=x^nF(y^{n})+y^nD(x^{n})$ for all $x,yin R$. Then, $F$ is a generalized left derivation with associated Jordan left derivation $D$ on $R$. Similar type of result has been done for the other identity forcing to generalized derivation and at last an example has given in support of the theorems. end{abstract}
متن کامل